17 research outputs found

    Proprioceptive Inference for Dual-Arm Grasping of Bulky Objects Using RoboSimian

    Get PDF
    This work demonstrates dual-arm lifting of bulky objects based on inferred object properties (center of mass (COM) location, weight, and shape) using proprioception (i.e. force torque measurements). Data-driven Bayesian models describe these quantities, which enables subsequent behaviors to depend on confidence of the learned models. Experiments were conducted using the NASA Jet Propulsion Laboratory's (JPL) RoboSimian to lift a variety of cumbersome objects ranging in mass from 7kg to 25kg. The position of a supporting second manipulator was determined using a particle set and heuristics that were derived from inferred object properties. The supporting manipulator decreased the initial manipulator's load and distributed the wrench load more equitably across each manipulator, for each bulky object. Knowledge of the objects came from pure proprioception (i.e. without reliance on vision or other exteroceptive sensors) throughout the experiments

    Proprioceptive Inference for Dual-Arm Grasping of Bulky Objects Using RoboSimian

    Get PDF
    This work demonstrates dual-arm lifting of bulky objects based on inferred object properties (center of mass (COM) location, weight, and shape) using proprioception (i.e. force torque measurements). Data-driven Bayesian models describe these quantities, which enables subsequent behaviors to depend on confidence of the learned models. Experiments were conducted using the NASA Jet Propulsion Laboratory's (JPL) RoboSimian to lift a variety of cumbersome objects ranging in mass from 7kg to 25kg. The position of a supporting second manipulator was determined using a particle set and heuristics that were derived from inferred object properties. The supporting manipulator decreased the initial manipulator's load and distributed the wrench load more equitably across each manipulator, for each bulky object. Knowledge of the objects came from pure proprioception (i.e. without reliance on vision or other exteroceptive sensors) throughout the experiments

    Space Science Opportunities Augmented by Exploration Telepresence

    Get PDF
    Since the end of the Apollo missions to the lunar surface in December 1972, humanity has exclusively conducted scientific studies on distant planetary surfaces using teleprogrammed robots. Operations and science return for all of these missions are constrained by two issues related to the great distances between terrestrial scientists and their exploration targets: high communication latencies and limited data bandwidth. Despite the proven successes of in-situ science being conducted using teleprogrammed robotic assets such as Spirit, Opportunity, and Curiosity rovers on the surface of Mars, future planetary field research may substantially overcome latency and bandwidth constraints by employing a variety of alternative strategies that could involve: 1) placing scientists/astronauts directly on planetary surfaces, as was done in the Apollo era; 2) developing fully autonomous robotic systems capable of conducting in-situ field science research; or 3) teleoperation of robotic assets by humans sufficiently proximal to the exploration targets to drastically reduce latencies and significantly increase bandwidth, thereby achieving effective human telepresence. This third strategy has been the focus of experts in telerobotics, telepresence, planetary science, and human spaceflight during two workshops held from October 3–7, 2016, and July 7–13, 2017, at the Keck Institute for Space Studies (KISS). Based on findings from these workshops, this document describes the conceptual and practical foundations of low-latency telepresence (LLT), opportunities for using derivative approaches for scientific exploration of planetary surfaces, and circumstances under which employing telepresence would be especially productive for planetary science. An important finding of these workshops is the conclusion that there has been limited study of the advantages of planetary science via LLT. A major recommendation from these workshops is that space agencies such as NASA should substantially increase science return with greater investments in this promising strategy for human conduct at distant exploration sites

    Space Science Opportunities Augmented by Exploration Telepresence

    Get PDF
    Since the end of the Apollo missions to the lunar surface in December 1972, humanity has exclusively conducted scientific studies on distant planetary surfaces using teleprogrammed robots. Operations and science return for all of these missions are constrained by two issues related to the great distances between terrestrial scientists and their exploration targets: high communication latencies and limited data bandwidth. Despite the proven successes of in-situ science being conducted using teleprogrammed robotic assets such as Spirit, Opportunity, and Curiosity rovers on the surface of Mars, future planetary field research may substantially overcome latency and bandwidth constraints by employing a variety of alternative strategies that could involve: 1) placing scientists/astronauts directly on planetary surfaces, as was done in the Apollo era; 2) developing fully autonomous robotic systems capable of conducting in-situ field science research; or 3) teleoperation of robotic assets by humans sufficiently proximal to the exploration targets to drastically reduce latencies and significantly increase bandwidth, thereby achieving effective human telepresence. This third strategy has been the focus of experts in telerobotics, telepresence, planetary science, and human spaceflight during two workshops held from October 3–7, 2016, and July 7–13, 2017, at the Keck Institute for Space Studies (KISS). Based on findings from these workshops, this document describes the conceptual and practical foundations of low-latency telepresence (LLT), opportunities for using derivative approaches for scientific exploration of planetary surfaces, and circumstances under which employing telepresence would be especially productive for planetary science. An important finding of these workshops is the conclusion that there has been limited study of the advantages of planetary science via LLT. A major recommendation from these workshops is that space agencies such as NASA should substantially increase science return with greater investments in this promising strategy for human conduct at distant exploration sites

    Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease

    Get PDF
    BACKGROUND: Patients with atherosclerotic vascular disease remain at high risk for cardiovascular events despite effective statin-based treatment of low-density lipoprotein (LDL) cholesterol levels. The inhibition of cholesteryl ester transfer protein (CETP) by anacetrapib reduces LDL cholesterol levels and increases high-density lipoprotein (HDL) cholesterol levels. However, trials of other CETP inhibitors have shown neutral or adverse effects on cardiovascular outcomes. METHODS: We conducted a randomized, double-blind, placebo-controlled trial involving 30,449 adults with atherosclerotic vascular disease who were receiving intensive atorvastatin therapy and who had a mean LDL cholesterol level of 61 mg per deciliter (1.58 mmol per liter), a mean non-HDL cholesterol level of 92 mg per deciliter (2.38 mmol per liter), and a mean HDL cholesterol level of 40 mg per deciliter (1.03 mmol per liter). The patients were assigned to receive either 100 mg of anacetrapib once daily (15,225 patients) or matching placebo (15,224 patients). The primary outcome was the first major coronary event, a composite of coronary death, myocardial infarction, or coronary revascularization. RESULTS: During the median follow-up period of 4.1 years, the primary outcome occurred in significantly fewer patients in the anacetrapib group than in the placebo group (1640 of 15,225 patients [10.8%] vs. 1803 of 15,224 patients [11.8%]; rate ratio, 0.91; 95% confidence interval, 0.85 to 0.97; P=0.004). The relative difference in risk was similar across multiple prespecified subgroups. At the trial midpoint, the mean level of HDL cholesterol was higher by 43 mg per deciliter (1.12 mmol per liter) in the anacetrapib group than in the placebo group (a relative difference of 104%), and the mean level of non-HDL cholesterol was lower by 17 mg per deciliter (0.44 mmol per liter), a relative difference of -18%. There were no significant between-group differences in the risk of death, cancer, or other serious adverse events. CONCLUSIONS: Among patients with atherosclerotic vascular disease who were receiving intensive statin therapy, the use of anacetrapib resulted in a lower incidence of major coronary events than the use of placebo. (Funded by Merck and others; Current Controlled Trials number, ISRCTN48678192 ; ClinicalTrials.gov number, NCT01252953 ; and EudraCT number, 2010-023467-18 .)

    Reduced dynamical equations for barycentric spherical robots

    No full text
    Barycentric spherical robots (BSRs) rely on a noncollocated center of mass and center of rotation for propulsion. Unique challenges inherent to BSRs include a nontrivial correlation between internal actuation, momentum, and net vehicle motion. A new method is presented for deriving reduced dynamical equations of motion (EOM) for a general class of BSRs which extends and synthesizes prior efforts in geometric mechanics. Our method is an extension of the BKMM approach [1], allowing Lagrangian reduction and reconstruction to be applied to dynamical systems with symmetry-breaking potential energies, such as those encountered by BSRs rolling on a surface. The resulting dynamical equations are of minimal dimension and vehicle motion due to actuation and momenta appear linearly in a simple first-order differential equation. The EOM of a BSR named Moball [2] [3] are derived to illustrate the approach's utility. A simple table summarizes our algorithm's application to popular BSRs in the literature, and the approach is extended to sloped terrains

    Reduced dynamical equations for barycentric spherical robots

    No full text
    Barycentric spherical robots (BSRs) rely on a noncollocated center of mass and center of rotation for propulsion. Unique challenges inherent to BSRs include a nontrivial correlation between internal actuation, momentum, and net vehicle motion. A new method is presented for deriving reduced dynamical equations of motion (EOM) for a general class of BSRs which extends and synthesizes prior efforts in geometric mechanics. Our method is an extension of the BKMM approach [1], allowing Lagrangian reduction and reconstruction to be applied to dynamical systems with symmetry-breaking potential energies, such as those encountered by BSRs rolling on a surface. The resulting dynamical equations are of minimal dimension and vehicle motion due to actuation and momenta appear linearly in a simple first-order differential equation. The EOM of a BSR named Moball [2] [3] are derived to illustrate the approach's utility. A simple table summarizes our algorithm's application to popular BSRs in the literature, and the approach is extended to sloped terrains

    Combined Energy Harvesting and Control of Moball: A Barycentric Spherical Robot

    No full text
    The mobile sensor platform Moball uses an array of sliding magnets and solenoids inside a spherical shell to both harvest energy and displace its center of mass or barycenter from its center of rotation in order to control the path along which it rolls. Previous simulations of the harvesting potential for the complete system are validated experimentally, and certain phenomena that restrict effective operating conditions for energy harvesting are investigated. Tracking of characteristic trajectories for a single mass control element is used to assess the performance of the solenoids as actuators, and the ability of the system to generate a control torque during motion is demonstrated

    Bioregional assessment project: Sydney Metropolitan, Southern Rivers and Hawkesbury-Nepean Catchments: data collation phase to study the impact of mining activity and coal seam gas on environmental assets

    Get PDF
    This study was commissioned by the Hawkesbury-Nepean (HNCMA), Sydney Metropolitan (SMCMA) and Southern Rivers (SRCMA) Catchment Management Authorities and undertaken by the University of Wollongong to collate existing data and to provide a preliminary assessment of the potential impacts of coal seam gas (CSG) and coal mining activities on environmental assets within the three CMA regions, where environmental assets were defined under three broad themes; water, land and biodiversity. This study formed part of the Australian Federal Government’s Department of Sustainability, Environment, Water, Population and Communities (SEWPaC) Bioregional Assessment initiative within regions potentially affected by CSG and coal mining activities. The key components of this study included: Creating a database (using on the SEWPaC supplied template) identifying key environmental assets (groundwater, surface water, wetlands, land use, soils, vegetation and threatened species) within each of the three CMA regions. Providing a list of the key GIS datasets used to compile the database and their sources. Providing this report which outlines findings in relation to potential impacts and hazards of coal seam gas and mining activity on these environmental assets. Identifying knowledge and data gaps, and providing recommendations for future research
    corecore